{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime\n", "from datetime import timedelta\n", "from pandas.plotting import register_matplotlib_converters\n", "from statsmodels.tsa.stattools import acf, pacf\n", "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", "register_matplotlib_converters()\n", "from time import time\n", "import os\n", "data_folder = '../data/'\n" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# 9: SARIMA Model" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def parser(s):\n", " return datetime.strptime(s, '%Y-%m-%d')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
\n", " | Total | \n", "
---|---|
Date | \n", "\n", " |
1986-01-01 | \n", "9034 | \n", "
1986-02-01 | \n", "9596 | \n", "
1986-03-01 | \n", "10558 | \n", "
1986-04-01 | \n", "9002 | \n", "
1986-05-01 | \n", "9239 | \n", "